На четвертой планете периодически возникают мощные пылевые бури, во время которых выработка электроэнергии для земной техники почти исключена. Это может обернуться большой проблемой во время пилотируемых экспедиций, ожидаемых в 2030-х годах.
Оказалось, что причина бурь весьма специфична: марсианский экватор и тропики энергодефицитны, а полюса — профицитны. Это противоположно картине, наблюдаемой на Земле.
Международная группа ученых сравнила снимки Земли и Марса, сделанные космическими аппаратами в инфракрасном диапазоне. Оказалось, если у нас экватор и тропики получали куда больше энергии, чем излучали, то на Красной планете картина обратная. Статья об этом опубликована в журнале AGU Advances.
На Земле приполярные районы хорошо отражают солнечный свет в космос льдами, но плохо удерживают инфракрасное излучение от своей поверхности. Так происходит потому, что главный парниковый газ, задерживающий ИК-излучение в земных условиях, — водяной пар. У полюсов его почти нет, в тропиках и на экваторе очень много. Его «одеяло» не дает низким широтам терять энергию, полученную от солнечных лучей. Энергопрофицит низких широт «экспортируется» в высокие с помощью ветров и циклонов, без которых зона умеренного климата была бы безжизненной холодной пустыней.
Однако как с этим обстоит дело на Марсе понять было существенно сложнее. Хотя такие попытки и предпринимались, они не затрагивали многолетние ряды наблюдений высокого разрешения. Поэтому по-настоящему глобальные пылевые бури на них не попадали. Ученые использовали данные Mars Global Surveyor, аппарата NASA, работавшего на околомарсианской орбите два десятка лет назад. Полученная картина энергетического баланса оказалась необычной: тропики и даже экватор Марса энергодефицитны, а приполярные регионы — наоборот.
Исследователи предположили, что причина в почти полном отсутствии водяного пара в местной атмосфере, где для него слишком холодно. Средняя температура на Марсе на 80 градусов ниже земной (-64 против −15 у нас). Поэтому в тропиках и на экваторе полученная днем тепловая энергия легко уносилась в космос ночью.
В приполярных регионах картина иная: они получали много солнечного излучения только местным летом, когда продолжительность ночей мала. От этого потеря энергии в ночное время тоже не так велика. Зимой энергию терять было бы легко, поскольку ночи длинные, но на практике ее в это время года и днем приходило так мало (Солнце низко над горизонтом), что общие потери в зимний сезон были низки.
В итоге весной в южном полушарии Марса пиковый энергетический «профицит» достигает 80 ватт на квадратный метр поверхности. Разность температур при нагреве поверхности запускала пылевые бури: они начинались точно в момент максимального энергопрофицита во время смены сезонов. Огромные массы пыли переносило то на небольшие расстояния, то в масштабе всей планеты. Так было в 2001 году, когда Красную планету охватила глобальная пылевая буря. Она затруднила поглощение тепла солнечных лучей, но одновременно уменьшила потерю тепла марсианской поверхностью (ИК-излучение не могло пройти через пыль). Поэтому хотя локальный энергопрофицит в высоких широтах сокращался, общий энергетический баланс планеты не страдал.
Новые данные важны сразу в двух отношениях. Во-первых, они объяснили природу марсианских уникально крупных пылевых бурь: те переносят энергию из высоких широт планеты в низкие. В теории это поможет улучшить прогнозы местных пылевых бурь, что крайне важно для будущих пилотируемых экспедиций. Ведь во время местной пылевой бури не работают солнечные батареи, даже атомные реакторы испытывали бы огромные проблемы с охлаждением. Пыль заблокировала бы излучение от их радиаторов охлаждения, как и охлаждение обдувом. То есть участникам пилотируемых экспедиций стоит заранее знать, когда не нужно планировать активных действий и стоит отсидеться на базе.
Во-вторых, из «перевернутого» энергетического баланса Марса следует, что его терраформирование по сценарию подогрева ледовых шапок орбитальными зеркалами может быть существенно проще, чем считалось. Если высокие широты поглощают больше энергии падающего излучения, чем испускают, нагреть их легче, чем в случае Земли. Как ни странно, такой сценарий терраформирования некоторые ученые оценивают как более экономичный, чем альтернативные.
Автор: Александр Березин